Road Infrastructure and Climate Change in Vietnam

Authors: Chinowsky, Schweikert, Strzepek, Strzepek

Publication Date: August 2012

Abstract: Climate change is a potential threat to Vietnam's development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam by evaluating the potential impact of changes from stressors, including: sea level rise, precipitation, temperature and flooding. Across 56 climate scenarios, the mean additional cost of maintaining the same road network through 2050 amount to US$10.5 billion. The potential scale of these impacts establishes climate change adaptation as an important component of planning and policy in the current and near future.

Climate change adaptation advantage for African road infrastructure

Authors: Paul Chinowsky, Amy Schweikert, Niko Strzepek, Kyle Manahan, Kenneth Strzepek and C. Adam Schlosser

Journal: Climatic Change

Publication Date: August 2012

Abstract: The African continent is facing the potential of a $183.6 billion USD liability to repair and maintain roads damaged from temperature and precipitation changes directly related to predicted climate change through 2100. This cost is strictly to retain the current road inventory. This cost does not include costs associated with impacts to critically needed new roads. In many African countries, limited or non-existent funds for adaptation and mitigation are challenging these countries to identify the threats that are posed by climate change, develop adaptation approaches to the predicted changes, incorporate changes into mid-range and long-term development plans, and secure funding for the proposed and necessary adaptations. Existing studies have attempted to quantify the impact of climate change on infrastructure assets that will be affected by climate change in the coming decades. The current study extends these efforts by specifically addressing the effect of climate change on the African road infrastructure. The study identifies both total costs and opportunity costs of repairing and maintaining infrastructure due to increased stressors from climate change. Proactive and reactive costs are examined for six climate scenarios, with costs ranging, respectively, from an average of $22 million USD to $54 million USD annually per country. A regional analysis shows contrast between impacts in five areas of the continent, with impacts ranging from 22 % opportunity cost to 168 %. These costs have the potential to delay critical infrastructure development on the continent and present a challenge to policy makers balancing short-term needs with long-term planning.

Estimated effects of climate change on flood vulnerability of U.S. bridges

Authors: Len Wright, Paul Chinowsky, Kenneth Strzepek, Russell Jones, Richard Streeter, Joel B. Smith, Jean-Marc Mayotte, Anthony Powell, Lesley Jantarasami, William Perkins

Journal: Mitigation and Adaptation Strategies for Global Change

Publication Date: February 2012

Abstract: We assessed the potential impacts of increased river flooding from climate change on bridges in the continental United States. Daily precipitation statistics from four climate models and three greenhouse gas (GHG) emissions scenarios (A2, A1B, and B1) were used to capture a range of potential changes in climate. Using changes in maximum daily precipitation, we estimated changes to the peak flow rates for the 100-year return period for 2,097 watersheds. These estimates were then combined with information from the National Bridge Inventory database to estimate changes to bridge scour vulnerability. The results indicate that there may be significant potential risks to bridges in the United States from increased precipitation intensities. Approximately 129,000 bridges were found to be currently deficient. Tens of thousands to more than 100,000 bridges could be vulnerable to increased river flows. Results by region vary considerably. In general, more bridges in eastern areas are vulnerable than those in western areas. The highest GHG emissions scenarios result in the largest number of bridges being at risk. The costs of adapting vulnerable bridges to avoid increased damage associated with climate change vary from approximately 140to250 billion through the 21st century. If these costs were spread out evenly over the century, the annual costs would be several billion dollars. The costs of protecting the bridges against climate change risks could be reduced by approximately 30% if existing deficient bridges are improved with riprap.

Adaptation Advantage to Climate Change Impacts on Road Infrastructure in Africa through 2100

Authors: Chinowsky, Schweikert, Strzepek, Manahan, Strzepek, Schlosser

Publication Date: April 2011

Abstract: The African continent is facing the potential of a US$183.6 billion liability to repair and maintain roads damaged from temperature and precipitation changes related to climate change through 2100. As detailed, the central part of the continent faces the greatest impact from climate change with countries facing an average cost of US$22 million annually, if they adopt a proactive adaptation policy and a US$54 million annual average, if a reactive approach is adopted. Additionally, countries face an average loss of opportunity to expand road networks from a low of 22 per cent to a high of 235 percent in the central region.

See more papers